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“Emergent” abilities in LLM
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LLMs are few-shot learners (and larger is better!)
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LLMs are few-shot learners (and larger is better!)

100 billion



Sourish DasguptaLLMs: Scaling Laws 6

LLMs are few-shot learners (and larger is better!)
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LLMs are few-shot learners (more training is better too!)
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Google BIG-BENCH benchmark

Sourish Dasgupta
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LLMs “seems” to get more intelligent with the following:

NT: scale w/o bottleneck

FLOPs (Floating-point Operations)
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Recap on Parameter size & FLOPs
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Emergent abilities are unpredictable
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If that’s true, we never get to know the following:

● Which abilities (and when) exactly will emerge?

● What controls the trigger?

● Can we make desirable abilities to emerge faster?

● Can we make undesirable abilities to be suppressed?
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Is the value of scaling laws only in predicting?

● How much return for a given compute (resource) budget?

● How to allocate the compute budget - model size vs. 
dataset size?
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Can there be a curve that fits “emergence”? Intuition

Source: CS-324, Stanford University
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https://stanford-cs324.github.io/winter2022/assets/pdfs/Scaling%20laws%20pdf.pdf
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What about fitting “emergence” in non-parametric setting

Source: CS-324, Stanford University
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https://stanford-cs324.github.io/winter2022/assets/pdfs/Scaling%20laws%20pdf.pdf


Sourish DasguptaLLMs: Scaling Laws

What if the loss-drop (i.e., emergence) follows power-law?

Power Law: can be -ve

Kaplan Laws

2020 Arxiv (cs); 
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A more reliable version:

Kaplan Laws

vs.

2020 Arxiv (cs); 
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We are in luck! Turns out that scale is predictable

Sourish Dasgupta

(NT: log-log plotting) Now that’s smooth!! 

more reliable

2020 Arxiv (cs); 

1 billion
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Observation 1a: Universality of Overfitting

2020 Arxiv (cs); 

1 billion
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Observation 1b: Sample Efficiency

Sourish Dasgupta2020 Arxiv (cs); 

1 billion
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Key takeaway 1: Both parameter and dataset to be scaled

Both needs to be scaled together

2020 Arxiv (cs); 
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Observation 2: What about training time (steps & FLOPs)?

2020 Arxiv (cs); 

1 billion
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Key takeaway 2: Universality of training

Kaplan Laws

2020 Arxiv (cs); 
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Are we only to worry about

???
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Key Takeaway 3: Model shape does not matter! 

Sourish Dasgupta2020 Arxiv (cs); 
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Key Takeaway 4: Embedding matrix does not matter! 

Sourish Dasgupta2020 Arxiv (cs); 

1 billion
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Key Takeaway 5: Dataset composition does not matter! 

Sourish Dasgupta2021 Arxiv (cs); 

1 billion
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Kaplan Scaling Laws at a glance:

Sourish Dasgupta2020 Arxiv (cs); 
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Is there any other alternative law?
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Turns out there is!

Lower bound

Chinchilla (Hoffman) Scaling Law

2022 NeurIPS; 
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The Chinchilla (Hoffman) Scaling Law

2022 NeurIPS; 
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Chinchilla Scaling Law vs. Kaplan Scaling Law

vs.

2022 NeurIPS; 
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The (revised) Chinchilla Scaling Law

2024 Arxiv (cs); 
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Is it a problem with our point-of-view?
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LLMs “seems” to get more intelligent with the following:
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Motivation: Not all metrics score same (Emergence Score)

Sourish Dasgupta2023 NeurIPS; 
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Is your accuracy metric non-linear or discontinuous? 

Too challenging for smaller models! 

Is it really worth??

> 92% of BIG-BENCH:

2023 NeurIPS; 
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Power Law in play!

Sourish Dasgupta

Length of token

2023 NeurIPS; 
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Problem with Non-linear Measure: Eg.: Exact string match

Sourish Dasgupta

Task: Add k-digit integers

2023 NeurIPS; 
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Change of perspective: Measure: Edit distance

Sourish Dasgupta

Task: Add k-digit integers

2023 NeurIPS; 
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Problem with Discontinuous Measure: Eg.: MCG

Sourish Dasgupta

Task: Choose one of two

2023 NeurIPS; 
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Change of perspective: Measure: Brier Score

Sourish Dasgupta

Task: Choose one of two

2023 NeurIPS; 
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Prediction: Power Law vs. Near-Linear counterpart

Sourish Dasgupta2023 NeurIPS; 

44



Sourish DasguptaLLMs: Scaling Laws

Results on GPT3.5/3: Task: 2-digit integer multiplication

Sourish Dasgupta2023 NeurIPS; 
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Does the claim work for Google BIG-BENCH benchmark?

Sourish Dasgupta2023 NeurIPS; 
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Key Takeaways

Sourish Dasgupta

● Want to predict without the theatrics? Choose a metric that’s “soft”

(in the continuous sense)

● There’s no sudden jump in reality (“most” can be predicted on a 

near-linear scale)

● Do  we really need the power law of scale? Maybe not!

2023 NeurIPS; 
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